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SUMMARY

In this paper, we analyse the numerical approximation of the heat transfer problem between two sub-
domains that we will consider �lled with a �uid and separated by a thin solid wall. First of all, we
state the problem in the whole domain with discontinuous physical properties. As an alternative and
under certain assumptions on the separating walls, a classical Robin boundary condition between the
�uid domains is obtained, thus eliminating the solid wall, and according to which the heat �ux is pro-
portional to the temperature di�erence between the two subdomains. Apart from discussing the relation
between both approaches, we consider their numerical approximation, considering di�erent alternatives
for the �rst case, that is, the case in which temperatures are also computed in the solid wall. Copyright
? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this work, we consider the heat transfer problem between two �uid subdomains separated
by a wall that we will consider thin [1], a problem with direct application to the thermal
analysis of buildings. To this end, we state and compare three possible alternatives:

• In the limit when the thickness of the separating wall tends to zero and assuming that
the heat transfer is purely by conduction and the heat capacity of the wall is negligible,
we obtain the classical Robin condition for the heat �ux on the wall, seen as boundary
of each subdomain. In particular, we obtain the surface convection coe�cient in terms

∗Correspondence to: Ramon Codina, Universitat Polit�ecnica de Catalunya, Jordi Girona 1-3, Edi�ci C1, 08034
Barcelona, Spain.

†E-mail: ramon.codina@upc.edu, Web page: http:==www.rmee.upc.edu=homes=codina
‡E-mail: guillaume.houzeaux@bsc.es

Contract=grant sponsor: Spanish Ministerio de Educaci�on y Ciencia

Received 23 November 2005
Revised 6 February 2006

Copyright ? 2006 John Wiley & Sons, Ltd. Accepted 6 February 2006



964 R. CODINA AND G. HOUZEAUX

of the thickness of the wall and its conductivity. We also indicate how to show that the
problem stated this way is well posed.

• If the heat capacity of the wall cannot be considered small, the previous boundary condi-
tion is inappropriate for transient problems. To approximate the heat conduction problem
in the interior of the solid wall, we propose a �nite di�erence scheme, both through the
thickness of this wall and to integrate in time the associated evolution problem.

• We consider �nally the most exact alternative, which consists in solving the complete
problem, that is, the �uid and thermal problem in each of the �uid subdomains and the
thermal problem in the separating solid wall. These are three coupled problems which
in turn can be dealt with using di�erent alternatives from the numerical point of view.
First, one could solve the whole domain in a fully coupled monolithic way, considering
simply that the physical properties are discontinuous. But it is also possible to use a
domain decomposition technique. Whereas at the continuous level, both approaches are
completely equivalent, the numerical approximation can yield slightly di�erent answers,
since the domain decomposition method requires the numerical evaluation of heat �uxes
on the boundaries of the subdomains.

For each of the three alternatives described, we approximate the �ow equations using a �nite
element formulation, and state di�erent domain decomposition strategies in order to allow the
uncoupling of the computation of the unknowns on each of the subdomains of analysis. The
comparison between the results obtained for each of the three alternatives proposed allows us
to estimate the validity and range of applicability of the assumptions made in the �rst two
options.
The paper is organized as follows. The continuous problem is presented in the following

section, which in turn is structured into three subsections: the problem written in the whole
domain, the domain decomposition strategy and the problem in two subdomains coupled
through a Robin condition. For each case, we present the strong and the weak forms of the
problem. Section 3 is concerned with the numerical approximation of the problems stated.
After describing the time integration, the space discretization is presented for the problem
written in the whole domain, solved using a domain decomposition strategy and solved in
two subdomains coupled through a Robin condition. For the second case, we present a standard
discretization of the solid wall as well as a very simple one obtained assuming that the width of
this solid is small. Numerical experiments are presented in Section 4 that con�rm the interest
of this last approach, original from this paper. Finally, conclusions are drawn in Section 5.

2. CONTINUOUS PROBLEM

The problem we consider consists in solving the heat equation in a domain � composed
by three subdomains: a �uid subdomain that will be called ‘subdomain 1’, a second �uid
subdomain called ‘subdomain 2’ and a third solid subdomain, that will be called ‘subdomain s’,
and which will be considered thin (with a dimension at each point much smaller than the
others). Due to this geometric feature of subdomain s, we will try to simplify the problem.
To this end, we will divide this work into three stages.
First, we state the problem in � considering that the physical properties are discontinuous.

These properties are density, speci�c heat and the thermal di�usion (or conduction) coe�cient.
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Figure 1. Domain composed by three subdomains. (Left) Whole domain �. (Centre) Domain � split
into three subdomains. (Right) Domain � approximated by two subdomains.

Since we consider subdomains 1 and 2 �lled with �uids, we will also need their viscosity and
velocity �eld, which will be considered known. The situation is illustrated in Figure 1 (left).
The second stage consists in dividing the domain � into three subdomains, �1, �2 and �s.

We will present a domain decomposition method that allows to compute the temperature
in each domain and accounts for the coupling between them. The situation is illustrated in
Figure 1 (centre).
Finally, in the third stage we will pro�t from the fact the �s is thin. For the sake of

conciseness, we will consider �s a �at wall, with the width in the x direction. If this width
is small, we will be able to simplify the temperature problem in �s and, in fact, to obtain
a domain decomposition problem only involving subdomains �1 and �2. The situation is
illustrated in Figure 1 (right). In case �s is not �at, the following discussion can be easily
adapted. In particular, discretization along its width has to be understood as discretization
along the normal to the mid-surface of the faces of �s, which will be approximately the
normal to the faces if the width is small.
In the continuous setting, the resulting problems in the �rst and second stages are equivalent,

that is to say, the solution of the problem in domain � is the same as that obtained from the
domain decomposition approach. However, at the numerical level there will be a di�erence
due to the way to compute numerically the heat �uxes in the domain decomposition method.
In contrast, the third phase represents an approximation a priori, in the de�nition of the
mathematical model and, more precisely, of the boundary conditions.

2.1. Problem statement on the whole domain

2.1.1. Strong form. Let � be an open domain in Rnd , where nd=2 or 3 is the number of
space dimensions, and let (0; tf ) be the time interval of analysis. Let us consider a known
transport velocity u, which we will assume bounded and divergence free, that is to say,
∇ · u=0.
Let � be the density, cp the speci�c heat and k the heat conduction coe�cient of the

whole medium. These properties will be variable in space and, in fact, discontinuous, since
we consider three di�erent materials, one in each subdomain. To simplify the exposition, we
will consider these physical properties as piecewise constant.
The equation for the temperature T that governs the heat transfer problem is

�cp(@tT + u · ∇T )− ∇ · (k∇T )=Q in �× (0; tf ) (1)

where Q is a volumetric heat source that we will take constant in time. The solution of this
equations requires initial and boundary conditions. Let us split the boundary @� of � into
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Figure 2. Boundary conditions.

three parts as @�=�D ∪�N ∪�R, where �D, �N and �R represent the part of the boundary
where Dirichlet, Neumann and Robin boundary conditions are prescribed, respectively (see
Figure 2). The initial and boundary conditions can thus be written as

T = T0 in �× {0}
T = TD on �D × (0; tf )

−k∇T · n= qN on �N × (0; tf )
�RT − k∇T · n= qR on �R × (0; tf )

(2)

In these equations, qN is the heat transferred per second and per unit of area from the
material that occupies the point where it is computed, qN¿0 meaning that the heat leaves the
material to the exterior of the domain. The Robin condition (2)4 is a linear combination of
the Dirichlet condition and the Neumann one. The coe�cient �R weights the former.
It is well known that this Robin condition can also represent a linearization of a radiation

boundary condition. However, in the following we will use the Robin condition not to model
radiation heat �ux, but to account for the presence of a solid wall separating two �uid
subdomains. The expression of �R in this case is obtained later on.

2.1.2. Weak form. Let us introduce some notation. We start introducing the functional spaces

H 1(�) :=
{
v∈L2(�)

∣∣∣∣ @v@xj ∈L2(�); j=1; : : : ; nd
}

V 0�D := {v∈H 1(�)| v |�D =0}
VTD�D := {v∈H 1(�)| v |�D =TD}

When �D = @�, we will omit this subscript in the expression of the corresponding functional
spaces. The scalar product in L2(�) will be denoted by

(u; v)0;� ≡ (u; v) :=
∫
�
uv d�

and we will use the notation

〈f; g〉! :=
∫
!
fg d!
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when the functions f and g are not necessarily square integrable and ! is either a subdomain
of � or part of the boundary @�. We denote the scalar product in H 1(�) by

(u; v)1;� = (u; v)0;� + (∇u;∇v)0;�
We also de�ne the norms in L2(!) and H 1(!) as

‖u‖k;!=[(u; u)k;!]1=2 for k=0; 1

A weak formulation of the problem is obtained by integrating by parts the di�usive term
in Equation (1). Let us introduce the bilinear form

a(T; v) := (�cp@tT; v)� + (�cpu · ∇T; v)� + (k∇T;∇v)� − 〈�RT; v〉�R
and the linear form

l(v)= 〈Q; v〉� − 〈qN; v〉�N − 〈qR ; v〉�R
The weak form of the problem consists in �nding T ∈L2(0; tf ;VTD�D )∩L∞(0; tf ;L2(�)) such
that

a(T; v)= l(v) ∀v∈V 0�D
where L2(0; tf ;VTD�D ) is the set of functions whose norm in VTD�D (which is the norm in H 1(�))
is square integrable in time, and L∞(0; tf ;L2(�)) the set of functions whose norm in L2(�)
is bounded in time.

2.2. Domain decomposition with three subdomains

Let us split the domain � into three subdomains �1, �s and �2 such that

�= int(�1 ∪�s ∪�2)
Let �1s be the common interface between �1 and �s, and �2s the common interface be-
tween �2 and �s. In order to simplify the notation, we will only consider homogeneous
Dirichlet conditions on the boundary of �, that is to say, TD =0 and �N =�R = ∅. This
domain decomposition is illustrated in Figure 1 (centre). We also de�ne

�Di =�D ∩ @�i for i=1; s; 2

as it is illustrated in Figure 3.

2.2.1. Strong form. The problem written in strong form for each of the three subdomains
consists in �nding T1, Ts and T2 such that

�1cp1(@tT1 + u1 · ∇T1)− ∇ · (k1∇T1) =Q1 in �1 × (0; tf )
�scps@tTs − ∇ · (ks∇Ts) =Qs in �s × (0; tf )

�2cp2(@tT2 + u2 · ∇T2)− ∇ · (k2∇T2) =Q2 in �2 × (0; tf )
(3)
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Figure 3. Boundary conditions for the three subdomains.

with the following initial and boundary conditions:

T1 = T0|�1 in �1 × {0}
Ts = T0|�s in �s × {0}
T2 = T0|�2 in �2 × {0}
T1 = 0 on �D1 × (0; tf )
Ts =0 on �Ds × (0; tf )
T2 = 0 on �D2 × (0; tf )

(4)

as well as the following transmission conditions between the subdomains:

T1 = Ts on �1s × (0; tf )
−k1∇T1 · n1 =−ks∇Ts · n1 on �1s × (0; tf )

T2 = Ts on �2s × (0; tf )
−k2∇T2 · n2 =−ks∇Ts · n2 on �2s × (0; tf )

(5)

which guarantee the continuity of the temperature and the heat �ux (which implies conserva-
tion of energy) on the interfaces.

2.2.2. Weak form. In practice, the transmission conditions (5) are applied to each subdomain,
if there is no overlapping between them, as we consider here. For two adjacent subdomains,
such as �1 and �s, we set the continuity of the heat �ux in the former and the continuity of
the temperature in the latter. This situation corresponds to what is called a Dirichlet=Neumann
coupling [2].
We present next the possibilities of coupling between the three subdomains. Let us de�ne

�rst the bilinear forms ai, de�ned on subdomains �i for i=1; 2; s, as

ai(Ti; v) := (�icpi@tTi; v)�i + (�icpiui · ∇Ti; v)�i + (ki∇Ti;∇v)�i ;−〈�RTi; v〉�R i (6)

We have included the last term in the bilinear forms in spite of the fact that it is going to
be zero for the cases considered.
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The weak form of problem (3)–(5) consists in �nding the temperatures

T1 ∈L2(0; tf ;V 0�D1)∩L∞(0; tf ;L2(�1))

Ts ∈L2(0; tf ;V 0�Ds)∩L∞(0; tf ;L2(�s))

T2 ∈L2(0; tf ;V 0�D2)∩L∞(0; tf ;L2(�2))

such that they satisfy the initial conditions 41–3 and

a1(T1; v1) = 〈Q1; v1〉�1 + 〈ks∇Ts · n1; v1〉�1s ∀v1 ∈V 0�D1
as(Ts; vs) = 〈Qs; vs〉�s ∀vs ∈V 0�Ds∩�1s∪�2s

Ts = T1 on �1s

Ts = T2 on �2s

a2(T2; v2) = 〈Q2; v2〉�2 + 〈ks∇Ts · n2; v2〉�2s ∀v2 ∈V 0�Ds

(7)

One can prove that problem (7) and (1) with TD =0 are equivalent (using for example
the techniques described in Reference [2]). Note that the continuity of the heat �uxes on
�1s and �2s is already incorporated in �1 and �2, respectively, whereas the continuity of the
temperatures is incorporated in �s. It is obvious that other possibilities are equally possible.

2.2.3. Iteration-by-subdomains scheme. Problem (7) is a coupled system for T1, Ts and T2. A
way to uncouple the calculation of these unknowns consists in designing and iterative scheme.
Denoting by k the iteration counter, for k=1; 2; : : : the following uncoupled problems can be
solved for each time instant t:

a1(Tk1 ; v1) = 〈Q1; v1〉�1 + 〈ks∇Tk−1s · n1; v1〉�1s ∀v1 ∈V 0�D1
a2(Tk2 ; v2) = 〈Q2; v2〉�2 + 〈ks∇Tk−1s · n2; v2〉�2s ∀v2 ∈V 0�Ds
as(Tks ; vs) = 〈Qs; vs〉�s ∀vs ∈V 0�Ds∪�1s∪�2s

T ks = T
k
1 on �1s

T ks = T
k
2 on �2s

(8)

Obviously, iterations have to be repeated until convergence. This is the so-called iteration-
by-subdomains method. It is seen that given an initial guess for the temperature at each time
instant, T 0s , the solution of (8) consists in solving the following problems sequentially:

• Equation (8)1. The transmission condition is of Neumann type on �1s and makes use of
the heat �ux previously computed in �s.

• Equation (8)2. The transmission condition is of Neumann type on �2s and makes use of
the heat �ux previously computed in �s.

• Equations (8)3–5. The transmission conditions are of Dirichlet type and make use of the
temperatures just computed in �1 and �2.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:963–986
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It is also possible to introduce relaxation factors at the moment of updating the transmission
conditions in (8) in order to accelerate (or even to achieve) convergence of the algorithm
(see for example References [2–4]).
It is understood in problem (8) that the iterative process is done within each time instant.

For a �nite di�erence time discretization as described later on, the iteration has to be per-
formed on the values of the temperature at the time step of consideration. It could be also
possible to design schemes in which the temperature at previous iterations is replaced by the
temperature at previous time steps, avoiding this way the need to iterate at the expense of
relaxing the coupling between subdomains and introducing an explicit operation in the time
integration, with the limitations on the time step size that this can imply (see, for example,
Reference [5]).

2.3. Domain decomposition with two subdomains

In the previous subsection, we have decomposed the original problem into three subproblems,
introducing transmission conditions that couple the subdomains by imposing continuity of the
temperature and the heat �uxes. In this subsection, we consider a simpli�ed problem, obtained
by simplifying the temperature problem in the solid domain �s. We will see that, under certain
assumptions, it is possible to relate directly the temperature in �1 to that in �2 through two
boundary conditions of Robin type. The situation is depicted in Figure 1 (right).

2.3.1. One-dimensional solution in the solid. The heat transport equation in the solid is

�scps@tTs − ∇ · (ks∇Ts)=Qs in �s × (0; tf ) (9)

which has to be supplied with the initial condition (4)2 and the boundary conditions

Ts = T1 on �1s

Ts = T2 on �2s

Let us simplify these equations. First, we will consider its dimensionless form. This will
allow us to compare its terms. Let us assume that the solid width follows the x direction and
its magnitude is d, whereas its length (in the z direction) and height (in the y direction) are
of order L. Let 	T be a characteristic temperature di�erence of the problem, and 	t a time
scale. Let us introduce the dimensionless variables

T ∗
s =Ts=	T; x∗= x=d; y∗=y=L; z∗= z=L; t∗= t=	t

We have then that

@T ∗
s

@t∗
− 1
Ped

@2T ∗
s

@x∗2 − 1
PeL

(
@2T ∗

s

@y∗2 +
@2T ∗

s

@z∗2

)
=Qs

	t
	T�scps

(10)

where

Pe‘=
�scps‘

2

ks	t
for ‘=d and ‘=L
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is a dimensionless number. If we assume that

Ped � 1

d� L
(11)

then the �rst and third terms of the left-hand side of (10) are negligible compared to the
second, and thus Equation (9) can be approximated by a one-dimensional di�usion equation,
which in dimensional form is

−ks @
2Ts
@x2

=Qs in �s × (0; tf ) (12)

The domain of this equation is illustrated in Figure 4. The boundary conditions for this
problem are

Ts = T1(x1s) at x1s

Ts = T2(x2s) at x2s

where we have assumed that x= x1s and x2s are the equations of the planes that de�ne the
boundaries of the solid. Note that in these last equations both T1(x1s) and T2(x2s) may depend
on y and z.
If we solve the problem analytically, we obtain, for a constant heat source Qs,

Ts= − Qs
2ks
(x − x1s)2 +

(
T2(x2s)− T1(x1s)

d
+
Qsd
2ks

)
(x − x1s) + T1(x1s) (13)

Di�erentiating this expression we can compute the heat �ux at x1s and x2s:

−ks @Ts@x
∣∣∣∣
x1s

=−ks
d
[T2(x2s)− T1(x1s)]− Qsd

2

−ks @Ts@x
∣∣∣∣
x2s

=−ks
d
[T2(x2s)− T1(x1s)] + Qsd2

Figure 4. One-dimensional approximation of the problem in �s.
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2.3.2. Robin condition at the walls. We have subdomains �1 and �2 connected through the
solid in �s, whose temperature is given by the analytical solution we have computed under
assumptions (11). This allows us to relate directly the temperature in �1 to that of �2. We
know that at the interface between the solid and the other two subdomains we have, apart
from the continuity of the temperature, the continuity of the heat �uxes, expressed by Equation
(5)2;4. Therefore

−k1 @T1@x
∣∣∣∣
x1s

=−ks
d
[T2(x2s)− T1(x1s)]− Qsd

2

−k2 @T2@x
∣∣∣∣
x2s

=−ks
d
[T2(x2s)− T1(x1s)] + Qsd2

(14)

One can check that the heat �ux jump is simply the heat source injected between the bound-
aries of the solid:

−k2 @T2@x
∣∣∣∣
x2s

+ k1
@T1
@x

∣∣∣∣
x1s

=Qsd

Equations (14) relate explicitly the temperature between subdomains 1 and 2. We can now
assume that the solid is very thin, so that planes x= x1s and x2s can be approximated by a
single plane x= xs at which

−k1 @T1@x =−ks
d
(T2 − T1)− Qsd

2
at xs

−k2 @T2@x =−ks
d
(T2 − T1) + Qsd2 at xs

For subdomain 1 at xs, we have that n1 = [1; 0; 0]t, and for subdomain 2, n2 = [−1; 0; 0]t.
Rewriting the last expression we get

�RT1 − k1∇T1 · n1 = �RT2 − Qsd
2

at xs

�RT2 − k2∇T2 · n2 = �RT1 − Qsd
2

at xs

These two conditions are of Robin type and relate subdomains 1 and 2. The coe�cient �R is
given by

�R =−ks
d
¡0 (15)

2.3.3. Strong form. As we did in the case with three subdomains to simplify the analysis, let
us assume that the temperature is zero on the boundary of the whole domain �. The coupled
problem in �1 and �2 consists in �nding T1 and T2 such that

�1cp1(@tT1 + u1 · ∇T1)− ∇ · (k1∇T1) =Q1 in �1 × (0; tf )

�2cp2(@tT2 + u2 · ∇T2)− ∇ · (k2∇T2) =Q2 in �2 × (0; tf )
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with the following initial and boundary conditions:

T1 = T0 |�1 in �1 × {0}
T2 = T0 |�2 in �2 × {0}
T1 = 0 on �D1 × (0; tf )
T2 = 0 on �D2 × (0; tf )

(16)

as well as the transmission conditions:

�RT1 − k1∇T1 · n1 = �RT2 − Qsd
2

on �s

�RT2 − k2∇T2 · n2 = �RT1 − Qsd
2

on �s

which are of Robin type.

2.3.4. Weak form. As before, we consider a homogeneous Dirichlet condition for the tem-
perature on the boundary of the whole domain, and thus on the boundary of each subdomain
except on the interface �s, where we have a Robin-type condition, that is, with the notation
introduced before,

�Ri =�s

Recalling the de�nition of the bilinear forms ai given by Equation (6), we have that

ai(Ti; v)= (�icpi@tTi; v)�i + (�icpiui · ∇Ti; v)�i + (ki∇Ti;∇v)�i − 〈�RTi; v〉�s
where in this case �R is given by Equation (15).
The weak form of the coupled problem consists in �nding T1 and T2 in the functional

spaces introduced earlier, and such that they satisfy the initial conditions (16)1;2 and

a1(T1; v1) + 〈�RT2; v1〉�s = 〈Q1; v1〉�1 + 〈Qsd=2; v1〉�s ∀v1 ∈V 0�D1
a2(T2; v2) + 〈�RT1; v2〉�s = 〈Q2; v2〉�2 + 〈Qsd=2; v2〉�s ∀v2 ∈V 0�D2

(17)

2.3.5. Existence and unicity. Let us comment now on the well posedness of the previous
coupled problem. To simplify the discussion, let us consider the problem stationary, that is,
without the temporal derivative in the bilinear forms that de�ne the problem. In compact
form, this problem can be written in the following way: �nd (T1; T2) ∈ V 0�D1 ×V 0�D2 such that

a12(T1; T2; v1; v2)= l12(v1; v2) ∀(v1; v2)∈V 0�D1 ×V 0�D2 (18)

where we have de�ned the bilinear form a12 and the linear form l12 as

a12(T1; T2; v1; v2) = a1(T1; v1) + 〈�RT2; v1〉�s + a2(T2; v2) + 〈�RT1; v2〉�s
= (k1∇T1;∇v1)�1 + (�1cp1u1 · ∇T1; v1)�1 + 〈�R(T2 − T1); v1〉�s
+(k2∇T2;∇v2)�2 + (�2cp2u2 · ∇T2; v2)�2 + 〈�R(T1 − T2); v2〉�s

l12(v1; v2) = 〈Q1; v1〉�1 + 〈Qsd=2; v1〉�s + 〈Q2; v2〉�2 + 〈Qsd=2; v2〉�s
Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:963–986
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According to Lax–Milgram lemma, problem (18) has a unique solution if the bilinear form
a12 is both continuous and coercive, that is to say, there exist positive constants M and N
such that

|a12(v1; v2;w1; w2)|6M (‖v1‖1;�1 + ‖v2‖1;�2)(‖w1‖1;�1 + ‖w2‖1;�2)

a12(v1; v2; v1; v2)¿N (‖v1‖21;�1 + ‖v2‖21;�2)

for all (v1; v2)∈V 0�D1 ×V 0�D2 and (w1; w2)∈V 0�D1 ×V 0�D2 .
Continuity is obtained using standard trace inequalities and using the boundedness assumed

for the advection velocity. Coercivity is obtained using the fact the �R is negative and the
Poincar�e–Friedrichs inequality. Details are omitted (see References [2, 6]).

3. DISCRETE PROBLEM

3.1. Time discretization

The time discretization will be performed using the generalized trapezoidal rule, that is to
say, a �nite di�erence scheme. The fully discrete problem will be obtained by discretizing
in space the time discrete problem using a �nite element formulation. Obviously, it is also
possible to start by discretizing �rst in space and after this in time the resulting initial value
problem (method of lines). Nevertheless, we will use the �rst option. Let us introduce the
following notation:

n� := n− 1 + �

fn� := �fn + (1− �)fn−1

�t := tn − tn−1

where 0¡�61. For �=1 we obtain the backward Euler scheme, of �rst order, and for �=1=2
the Crank–Nicolson scheme, of second order. Both are unconditionally stable.
The time discretization that we describe next can be applied to any of the problems pre-

sented in the previous section. To �x ideas, we present it in the case of the whole domain �.
Let us de�ne

bn�(T; v) := (�cpun� · ∇T; v) + (k∇T;∇v)− 〈�RT; v〉�R
ln�(v) := 〈Q; v〉� − 〈qn�N ; v〉�N − 〈qn�R ; v〉�R

(19)

The problem discretized in time written in weak form consists in: for n=1; 2; : : : ; �nd
Tn� ∈VTD such that

1
��t
(�cpTn� ; v) + bn�(Tn� ; v)=

1
��t
(�cpTn−1; v) + ln�(v) ∀v∈V 0 (20)

It is seen from the expression of the space where the solution is sought that we have considered
�D = @�.
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3.2. Space discretization of the whole domain problem

Let us consider a �nite element partition of the whole domain �, from which we build up �nite
element spaces VTDh ⊂VTD and V 0h ⊂V 0 in the usual manner (see, for example, Reference [7]).
In all what follows, subscript h will refer to �nite element spaces and functions in these spaces.
The Galerkin �nite element approximation of problem (20) consists of �nding Tn�h ∈VTDh

such that

1
��t
(�cpT

n�
h ; vh) + b

n�(Tn�h ; vh)=
1
��t
(�cpTn−1h ; vh) + ln�(vh) ∀vh ∈V 0h (21)

It is well known that this problem displays numerical instabilities when the conduction coe�-
cient is small compared to the advection term, that is, when the �ow is convection-dominated.
In this case, the numerical solution exhibits oscillations, particularly near boundaries. To over-
come this problem, we use a stabilized �nite element formulation [8]. However, and since
this point is not relevant for what follows and for the sake of simplicity in the exposition,
we will restrict ourselves to the Galerkin formulation (21) to approximate problem (20).
The only salient feature of problem (21) is the de�nition of the physical properties, which

are discontinuous when passing from �1 to �s and from �s to �2. Likewise, we must take into
account that at this moment we are considering �s completely discretized by �nite elements
(even though we consider it a thin domain).

3.3. Discretization of the domain decomposition problem

We undertake now the approximation of problem (7), which in practice is implemented in
iterative form as indicated in (8). Using the appropriate subscripts for the bilinear form
b introduced in Equation (19), the fully discrete problem consists in: for n=1; 2; : : : ; �nd
Tn�1; h ∈V 0�D1; h , T

n�
s; h ∈V 0�Ds; h and T

n�
2; h ∈V 0�D2; h such that

�1cp1
��t

(�Tn�1; h; v1; h)�1 + b1(T
n�
1; h; v1; h) = 〈Q1; v1; h〉�1 + 〈ks∇Tn�s; h · n1; v1; h〉�1s

�scps
��t

(�Tn�s; h; vs; h)�s + bs(T
n�
s; h; vs; h) = 〈Qs; vs; h〉�s

T n�s; h = T
n�
1; h on �1s

T n�s; h = T
n�
2; h on �2s

�2cp2
��t

(�Tn�2; h; v2; h)�2 + b2(T
n�
2; h; v2; h) = 〈Q2; v2;h〉�2 + 〈ks∇Tn�s; h · n2; v2; h〉�2s

(22)

for all functions v1; h ∈V 0�D1 , vs; h ∈V 0�Ds∪�1s∪�2s and v2; h ∈V 0�Ds , where �T
n�
j;h := Tn�j; h − Tn−1j; h ,

j=1; s; 2. For the continuous problem, the domain decomposition statement gives rise
exactly to the same solution as the problem written in the whole domain. However, problems
(21) and (22) will have di�erent solutions (apart from the simpli�cation introduced in the
boundary conditions) due to the need to approximate the heat �uxes in (22)1;5. Note that
for the discrete problem in the whole domain, the weak continuity of the heat �uxes is a
consequence of disregarding them in the elemental contributions.
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Assuming known the temperatures on �1; s and �2; s, the problem to be solved for the
temperature in the solid domain is (22)2–4. These discrete equations are completely general.
However, we can simplify them taking into account the geometry of the solid.

3.3.1. Finite element approximation of the solid. This is the most general case. The prob-
lem to be solved on the solid is (22)2–4. The only remark that needs to be done is the
way to compute the heat �uxes that have to be used in Equations (22)1;5. In general cases,
we can obtain a good approximation to these �uxes by projecting derivatives of the �nite
element functions onto the space of continuous �nite element functions, and with these
projections computing the normal derivatives that appear in (22)1;5 (see Reference [9]).
However, given the geometry of the solid, we can assume that it is discretized using a
structured mesh along its width. This allows us to approximate the heat �ux to second
order as

@Ts; h
@x

∣∣∣∣
x1s

=
1
2h
(−3Ts;1 + 4Ts;2 − Ts;3) (23)

where Ts;1, Ts;2 and Ts;3 are the three �rst nodes that appear in the solid in the direction
normal to the wall, which, as before, has been assumed to be the x direction. In the previous
equation, h denotes the distance between nodes. The heat �ux at x2s can be computed in an
analogous way.

3.3.2. Finite di�erence approximation with three points in the solid. The geometry of the
solid allows also a simpli�cation that we propose in this paper and whose numerical behaviour
is studied in the next section. Assuming as before that the normal to the wall is the x
direction, we can assume that there is only one point inside the solid and problem (7)2–4
is approximated using �nite di�erences using this single point. Calling Tn�s; h the temperature
at this point assumed to be located at the middle of the solid (for y and z �xed), we
have that

�scps
T n�s; h − Tns; h
��t

− ks
T n�1; h|�1s − 2Tn�s; h + Tn�2; h|�2s

(d=2)2
=Qs

Using ��t as time scale, let us introduce the dimensionless number

Pe�=
�scpsd

2

ks��t

The expression of the temperature at the middle of the solid is

Tn�s; h=
Pe�T ns; h − dQs=�R + 4(Tn�1; h|�1s + Tn�2; h|�2s)

Pe� + 8
(24)

This expression allows us to obtain a temporal approximation to the temperature in the solid
wall for the time evolution problem. Note that when Pe� → 0 or when the problem reaches a
stationary state for which Tn�s; h=T

n
s; h, the value that follows from (24) is precisely the same

that is obtained from (13) at x= x1s + d=2.
Again in this case we must use the heat �uxes computed at the walls to approximate

the problems in �1 and �2. To this end, we can make use once more of the second-order
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expression (23), which in this particular case becomes

@Tn�s; h
@x

∣∣∣∣∣
x1s

=
1
d
[−3Tn�1; h|�1s + 4Tn�s; h − Tn�2; h|�2s]

@Tn�s; h
@x

∣∣∣∣∣
x2s

=
1
d
[3Tn�2; h|�2s − 4Tn�s; h + Tn�1; h|�1s]

Joining �1s and �2s to de�ne the solid boundary, we can see that the coupled problem consists
in �nding Tn�1; h ∈V 0�D1; h and T

n�
2; h ∈V 0�D2; h such that

�1cp1
��t

(�Tn�1; h; v1; h)�1 + b1(T
n�
1; h; v1; h)− �R1〈Tn�1; h; v1; h〉�s + �R2〈Tn�2; h; v1; h〉�s

= 〈Q1; v1; h〉�1 + 〈QR ; v1; h〉�s
�2cp2
��t

(�Tn�2; h; v2; h)�2 + b2(T
n�
2; h; v2; h)− �R1〈Tn�2; h; v2; h〉�s + �R2〈Tn�1; h; v2; h〉�s

= 〈Q2; v2; h〉�2 + 〈QR ; v2; h〉�s

(25)

for all functions v1; h ∈V 0�D1 and v2; h ∈V 0�Ds . We have de�ned

�R1 = �R

(
1 +

2Pe�

Pe� + 8

)

�R2 = �R

(
1− 2Pe�

Pe� + 8

)

QR =
4

Pe� + 8
(
�R Pe� T ns; h −Qsd

)
From the computational point of view, the only di�erence between this method and the method
presented in the next subsection is the expression of these coe�cients, that replace �R and Qs.
The computational price is to store Tns; h. To this end, only an array whose dimension is equal
to the number of points inside the solid wall (which is the same as the number of points in
the surfaces �D1 and �D2) is needed.

3.4. Discretization of the problem with Robin boundary conditions

Finally, let us consider the simplest case from the computational point of view and, a priori,
the least exact. It consists in the approximation of problem (17) in the domains �1 and �2
using �nite elements and coupling them through a Robin boundary condition. Let us recall
that this problem arises from assuming that the temperature in the solid is solution of the
stationary one-dimensional heat equation with constant heat source (12). The coupled problem
consists in �nding Tn�1; h ∈V 0�D1; h and T

n�
2; h ∈V 0�D2; h such that

�1cp1
��t

(�Tn�1; h; v1; h)�1 + b1(T
n�
1; h; v1; h)− �R〈Tn�1; h − Tn�2; h; v1; h〉�1s

= 〈Q1; v1; h〉�1 + 〈Qsd=2; v1; h〉�s
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�2cp2
��t

(�Tn�2; h; v2; h)�2 + b2(T
n�
2; h; v2; h)− �R〈Tn�2; h − Tn�1; h; v2; h〉�2s

= 〈Q2; v2; h〉�2 + 〈Qsd=2; v2; h〉�s
for all functions v1; h ∈V 0�D1 and v2; h ∈V 0�Ds . Observe that this problem is equivalent to problem
(25) taking Pe�=0.

4. NUMERICAL EXAMPLES

In this section, we compare the numerical performance of the di�erent approximations intro-
duced in the previous sections. In particular, we have:

• Method 1D: Solution of the whole problem (Section 3.2).
• Method 3D: Solution using domain decomposition discretizing �s with the same �nite
element partition as for Method 1D. The di�erence in the converged solution between
the results of this and the previous formulation is due only to the computation of the
heat �uxes on the walls (Section 3.3.1).

• Method 2D1: Solution using domain decomposition discretizing �s with only three �nite
di�erence nodes along its width (Section 3.3.2).

• Method 2Ds: Solution in subdomains �1 and �2 using a Robin boundary condition
between them to simulate the presence of the solid (Section 3.4).

In spite of the fact that the method described as domain decomposition is what we have
called Method 3D, methods 2D1 and 2Ds can be also considered as such. Instead of solving in
a coupled way for the temperatures in domains �1 and �2, it is also possible to set an iterative
scheme, solving in one of the domains taking as boundary condition the �ux computed from
the temperature in the other domain. This implementation can be done using a master–slave
strategy, as it is described in Reference [9].

4.1. One-dimensional example

We consider �rst a one-dimensional example, whose geometry is shown in Figure 5.
Let us de�ne the thermal di�usion as �i= ki=(�icpi) for i=1; s; 2. The subdomains to be

considered have the following data:

Subdomain 1:

�1 = [0; 1]

�1 = 2:11× 10−5

Subdomain s:
�s=[1; 1:1]; d=0:1

�s=3:62× 10−7; × 10−6; × 10−4

Subdomain 2:
�2 = [1:1; 2:1]

�2 = 2:11× 10−5

Figure 5. One-dimensional example. Geometry.
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As it is indicated in the properties of the solid in �s, we have considered three situations, for
�s=3:62× 10−7, 3:62× 10−6 and 3:62× 10−4. From these values we de�ne the dimensionless
number

Ped=
d2

�s�

so that the three cases considered are

(a) �s=3:62× 10−7 → Ped=2:76× 100,
(b) �s=3:62× 10−6 →Ped=2:76× 10−1,
(c) �s=3:62× 10−4 →Ped=2:76× 10−3.

The initial and boundary conditions chosen are

T =25 at t=0

T =20 + 5 cos(2�t=�); �=104 at x=0

T =25 at x=2:1

The time step size has been taken as �t= �=10, and the time interval considered [0,8�].
We note that the temperature at x=0 oscillates between 15 and 20 in a period �. Therefore,
we solve eight periods with 10 time steps in each. In the SI unit system, the material in
subdomains 1 and 2 is air, whereas the solid has properties similar to those of glass when
�s=3:62× 10−7 (case (a)). The period of oscillation of the boundary condition is then of
2.8 h, approximately.
All the equations have been solved using the �nite element method and the backward Euler

time integration scheme. For the four methods considered (1D, 3D, 2D1 and 2Ds) we have
used a uniform partition of subdomains 1 and 2 with 10 linear elements in each; for method
1D and method 3D the solid has also been discretized using 10 linear elements of equal
length. For method 3D, the derivatives involved in the calculation of the heat �ux have been
obtained using a second-order scheme, as explained in Section 3.3.1.
Figures 6 (top) show the evolution of the solution for the four methods considered at point

P1, with abscise x1 = 1, and Figures 6 (centre) the evolution at P2, with abscise x2 = 1:1.
We can observe that for the three di�erent values of �s considered, method 2D1 gives better
results than method 2Ds.
Figures 6 (bottom) show the temperature distribution at time t=3× 104. It is observed

that, in spite of the fact that method 2Ds seems to capture correctly the temperature jump
between the walls of the solid, it has a similar error in the two cases considered.
Finally, Figure 7 shows the dependence of the error in terms of dimensionless number Ped.

This error is computed as

Error%=100×
(∑80

n=1

∑2
i=1

∑11
k=1 [T̃

n
i;h(k)− Tni;h(k)]2∑80

n=1

∑2
i=1

∑11
k=1 [T

n
i;h(k)]2

)1=2
(26)

T̃
n
i;h(k) being the temperature computed with either approximation 3D, 2D1 or 2Ds at the
time level n and at node k of subdomain i, whereas Tni;h(k) is the temperature obtained with
method 1D, with the same meaning of the subscripts and superscripts.
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Figure 6. One-dimensional example. (Left) Ped=2:76× 100, case (a). (Right) Ped=2:76× 10−3,
case (c). (Top) Evolution of the temperature at P1. (Centre) Evolution of the temperature at P2.

(Bottom) Temperature distribution at t=3× 104.

4.2. Natural convection in a double cavity

The goal of this example is to approximate the convective motion of two �uids in two di�erent
cavities separated by a thin wall. The geometry of the whole set is shown in Figure 8.
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Figure 7. One-dimensional example. Error in terms of Ped (Equation (26)).

Figure 8. Double cavity. Geometry.

In this case, the heat equation is coupled to the Navier–Stokes equations through the Boussi-
nesq assumption. Let u be the �uid velocity and p its pressure. We denote the viscosity of each
�uid by �i, i=1; 2, and its thermal expansion coe�cient by 	i, i=1; 2. Let also g=(0;−1)
be the gravity vector. The system of equations that govern this problem is composed by the
temperature equation and the Navier–Stokes equations. The former is

�cp(@tT + u · ∇T )− ∇ · (k∇T )=Q in �× (0; tf ) (27)

where �=�i, cp= cpi and ki are discontinuous, taking values depending on the material
i=1; s; 2. On the other hand, the Navier–Stokes equations for the velocity and the pressure
are

�1@tu+ �1(u · ∇)u − 2�1∇ · U(u) +∇p= �1g	1T in �1 × (0; tf )
∇ · u=0 in �1 × (0; tf )
u= 0 in �s × (0; tf )
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�2@tu+ �2(u · ∇)u − 2�2∇ · U(u) +∇p= �2g	2T in �2 × (0; tf )
∇ · u=0 in �2 × (0; tf )

where U(u) is the symmetrical part of the velocity gradient. The initial and boundary condi-
tions, illustrated in Figure 8, are

T =0 at t=0

T =2 at x=0

T =1 at x=2:1

∇T · n=0 at y=0

∇T · n=0 at y=1

u= 0 at t=0

u= 0 at x=0; x = 2:1; y=0; y = 1

The subdomains of this example are characterized by the following data:

Subdomain 1:

�1 = [0; 1]× [0; 1]
�1 = 1

cp1 = 1

k1 = 1

�1 = 5× 10−3

	1 = 125

Subdomain s:

�s=[1; 1:1]× [0; 1]
�s=1

cps =1

ks=10−2

�s=−
	s=−

Subdomain 2:

�1 = [1:1; 2:1]× [0; 1]
�2 = 1

cp2 = 1

k2 = 1

�2 = 5× 10−3

	2 = 125

Let 	Ti , for i=1; 2, be a characteristic temperature di�erence of the problems in cavities 1
and 2, respectively. The Prandtl number of the �uids, Pri, and the Grashof number of the
�ows, Gri, are de�ned as

Pri=
cpi�i
ki

=5× 10−3

Gri=
	i|g|�2i L3	Ti

�2i
=5	Ti × 106

for i=1; 2.
Regarding the time integration, the time step size is �t=0:05 and the time interval (0; 10:0).
The �ow equations have been discretized in space using a �nite element method and in time

using the backward Euler time integration scheme. A stabilized formulation has been used
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Figure 9. Double cavity. Velocity vectors. From top to bottom: t=2:0; 3:3; 5:0; 10:0.
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Figure 10. Double cavity. Temporal evolution at two test points. (Left) x velocity normalized by
U =

√
	|g|L	T . (Right) Temperature. (Top) Point P2 = (1:6; 0:5). (Bottom) Point P1 = (1:6; 0:8).

for both the temperature equation and the Navier–Stokes equations, based on the so-called
algebraic subgrid scale (ASGS) formulation presented in Reference [8] following the general
ideas proposed in Reference [10].
Our purpose is to compare the results obtained using methods 2D1 and 2Ds with those of

the 1D method. We have used meshes of 20× 20 quadrilateral bilinear elements uniformly
distributed in both directions for subdomains 1 and 2; in the 1D method, we have also meshed
the solid with 10 bilinear elements uniformly distributed along the width and 20 elements in
the vertical direction.
Figure 9 shows the evolution of the velocity vectors in time.
Four stages in the development of the �ow can be distinguished:

1. Being zero the initial temperature, the initial Grashof number in subdomain 1, Gr1 = 107,
doubles that of subdomain 2, which is Gr1 = 5× 106. Therefore, the �uid starts rotating
faster in cavity 1. See the �rst �gure from the top in Figure 9.

2. Once the process has started, the subdomains exchange heat through the solid. The
Grashof number of both subdomains decrease. Consequently, both �ows slow down. See
the second �gure from the top in Figure 9.
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Figure 11. Double cavity. Solution along the vertical cut y=0:5. (Left) x velocity normalized by
U =

√
	|g|L	T . (Right) Temperature. (Top) Time t=1. (Bottom) Time t=4.

3. The cavities keep exchanging heat until the value of the Grashof number in subdomain
2 is zero and then the temperature increment changes sign (the hotter wall is x=1:1
and not x=2:1). At this moment, the �uid in cavity 2 inverts its rotating sense. See the
third �gure from the top in Figure 9.

4. Finally, the systems reaches an equilibrium where the temperature at the middle of the
solid is 1.5. At this moment, the �uid rotate in opposite senses with the same intensity,
since both �uids have a characteristic temperature di�erence of 0.5 and the same Grashof
number Gr1 =Gr2 = 2:5× 106. See the �gure at the bottom of Figure 9.

In Figure 10, the evolution of the x-velocity component and the evolution of the temperature
at two points, P1 = (1:6; 0:8) and P2 = (1:6; 0:5), are plotted for di�erent methods.
It is observed that the temporal evolution of the temperature is very similar for methods

2D1 and 2Ds. However, method 2D1 allows us to capture much better the temporal evolution
of the velocity. The error is almost the 10% for method 2Ds close to t=1. Figure 11 con�rms
this fact, showing the comparison of the x-velocity component and the temperature along the
horizontal cut y=0:5 for two time steps, corresponding to t=1 and to 4.
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5. CONCLUSIONS

In this paper, we have presented several approximations to the heat transfer problem between
domains separated by a thin solid wall. We have analysed in particular the basic strategies
of numerical approximation of the solid and its modelling through a Robin-type boundary
condition. The derivation of this condition is based on the fact that the temperature di�er-
ence between the interfaces with the two subdomains is produced instantaneously, and thus
it is foreseeable that in transient problems this approximation will be poor. The numerical
examples presented con�rm this fact. The errors that arise with this approximation do not
spoil completely the numerical solution, but can be quite signi�cant. To avoid them, we have
proposed to approximate the heat �ux in the interior of the solid through a �nite di�erence
scheme of only three points, one in the middle of the solid along its width and the other
two on its boundaries. This approximation has turned out to be a signi�cant improvement,
and also very easy to implement with minor changes with respect to the classical formulation
with the Robin boundary condition.
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